
Figure 1. Image point (u,v) in FOV.  
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This memo calculates the blurring of images due to optical distortion in FAME.  The
reduction in precision is of the order of 5%, small but not negligible.  Not considered here is the
effect on image shape [see Zacharias, Memo 13], which might present an unacceptable
computational burden, or result in systematic error if adequate computational resources cannot be
brought to bear.

The ideal mapping from sky to focal plane is 

u � fθu (1)

where u is position in the focal plane in the scan direction, f is the focal length and θu is angle
measured about the spacecraft rotation axis.  Even in an optical system that is as free of distortion
as possible, there is a type of distortion due to the projection of the celestial sphere onto the
planar detector surface, discussed in Appendix A.  For FAME, this projection distortion is small. 
The more significant effect of optical distortion is calculated below.  

"Optical distortion" refers to a
particular Seidel aberration, in which the
effective focal length varies as a function of
radius in the field of view (FOV),  resulting in
a radial perturbation of image position that is
cubic in radius.  Distortion leaves the image
shape at a given point on the focal plane
unchanged, to excellent approximation. 
However, variations of image speed during
the integration across the CCD can give rise
to changes of shape, which will require
modeling in the data reduction.  Other
aberrations such as coma also change the
image shape.  The shape changes are
significant, but are not treated here.  

Let v represent position in the focal
plane in the cross-scan direction (Fig. 1), 



Quantity Sym. Value

Focal length f 15017.26 mm

Distortion coefficient α 0.0135 m/m3 (w/o
aspheric corrector)

Pixel size w 15 µm

Number of pixels
(scan)
(cross-scan)

NS
NC

4096
2048

FOV radius (linear) ρo 0.149 m

FOV radius (angular) ρo/f 0.570000 deg

Table 1. Quantities used.

 be the radius of a point from the center of the FOV, and ψ be its polar angle. ρ � u 2
�v 2

Distortion shifts the image by a radial distance 

∆ρ � αρ3 . (2)

For FAME without the aspheric distortion corrector, , or 45 µm at the edge ofα � 0.0135 m/m 3

the FOV.  In components, the star shift is

∆u � ∆ρcosψ
∆v � ∆ρsinψ . (3)

Noting that  andsinψ �v/ρ
 and combining (2) and (3), wecosψ �u/ρ ,

obtain

∆u � α u (u 2
�v 2 )

∆v � α v (u 2
�v 2 ) . (4)

Along the axes (u=0 or v=0) the distortion
in the non-zero coordinate is cubic, but on a
circle centered on the center of the FOV it
is linear.  This gives shape to Fig. 3 of
[Horner, FAME EM-0005], in which the
distortion ∆u is plotted as height over the
uv plane.  The edge of the FOV is circular. 
The distortion on this edge appears in EM-
0005 as an ellipse lying in a tilted plane.

Cross-scan

To compensate for cross-scan image motion, the CCD can be rotated to best align with
the local direction.  Even without the aspheric distortion correction, the needed rotation is less
than one pixel out of 4096.  The shift will not be treated herein.

In-scan

The in-scan component ∆u shifts and blurs the image.  The shift is up to ~3 pixels.  The
resulting bias in the astrometric data can be removed in the analysis by estimating the parameters
of a model that treats the cubic term, and probably other terms as well, such as those due to
manufacturing and alignment errors.  An accuracy of better than one part in 103 is required on the
cubic term, but it will be a slowly-varying function of time.

The variation of the in-scan component ∆u represents a varying image velocity, which
blurs the detected image, so degrades the photon-limited precision, σ.  

The mean image position is shifted by  where the average is taken over one CCD<∆u>,
column.  The RMS blur is then



1 Although adjusting each CCD's clock rate separately would reduce the blur due to
distortion, for simplicity of the onboard electronics, all FAME CCD's will clock at the same rate.  

b � <(∆u�<∆u>)2> � <∆u 2> � <∆u>2 . (5)

The velocity with which the CCD's are clocked will be adjusted to minimize the blur, considering
all CCD's1.  (The astrometric chips are the primary concern.)  The in-scan distortion with
adjusted clock is

∆u � α u u 2
�v 2

� βρ 2
o u , (6)

where β is the clock rate adjust parameter, and ρo is the (linear) radius of the FOV.  For β=1, the
clock rate adjustment cancels the image displacement due to distortion at the edge of the FOV. 
One may take the mean square of (6), integrate over the whole FOV, and minimize with respect
to β.  This yields β = 3/5.  However, an accurate measure of the blur can only be obtained by
integrating over just the CCD column in question.  Basing the choice of β on such an integration
may yield improved mission precision.  Below, I give the integration over a column, and present
results for one column of each CCD.

The RMS blur in a CCD column is obtained by putting (6) into (5), and taking the
averages from (u1,v) to (u2,v).  We get
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This result does not simplify nicely, but it allows convenient numerical evaluation of the blur,
and optimization with respect to β.  

With values as given in Table 1, the blur for each CCD is given in Table 2, for two values
of the clock rate adjust parameter, β.  The CCD positions used were taken from Horner,
EM-0005, and are plotted directly from that numerical data in Fig. 2.  The blur was calculated for
a column centered in cross-scan.  Two choices of β are shown in the table, β=0.6, which is the
value that minimizes an RMS of blur over the whole focal plane, and is close to the value that
minimizes the RSS of RMS values across each of the FAME astrometric chips.  With this value
of β, the two astrometric chips closest to the edge of the FOV, 11 and 14, see an RMS blur of
5.3 µm, and the rest have blur of 2.0 µm or under.  The other value, β=1.0, reduces the maximum
blur, but 10 astrometric chips have blur from 3.3 to 4.0 µm, and the RSS is increased.  

One measure of the way blur affects mission accuracy is the RMS of the RMS values for
each chip alone; this is given in the bottom row of the table.   This measure is clearly wrong, in
the limit in which a few chips have blur so extreme that they don't contribute usefully to mission
information.  The blur from these chips, however, dominates the RMS of the RMS blur values. 
Nonetheless, in the limit that the blur from distortion is small compared with the width of the



2 For example, all faint-star CCD's visited by all faint stars.

PSF, the RMS of the RMS may be a useful measure.  The correct measure is mission accuracy,
which one can calculate if the effect of blur on photon-noise-limited error is known.  

To optimize β based on mission accuracy, one would start with an expression giving an
estimate of σ(θ), as can be obtained from a covariance study of the centering of images blurred
by various values θ.  The statistical portion of mission accuracy is 

σm � �
i

1
σ(θi)

2

�1/2

(8)

where i runs over all observations, and θi is the rms blur for the i-th observation.  One then
wishes to choose β so as to minimize σm.  Assuming that all CCD's are visited roughly equally by
all stars2, one may simplify the evaluation of (8) by making the sum run over all CCD's, with θi
the rms blur in the i-th CCD.  Such an optimization may be the subject of a future memo.

Estimate of the effect on precision.

An estimate of the effect of the blur shown in Table 2 can be obtained by estimating the
resultant broadening of the PSF.  For two Gaussian functions, the RMS of their convolution is
the RSS of the individual RMS's.  For a variety of other functional forms, this turns out to be
approximately true.  The sinc2(x) PSF for the rectangular aperture does not have a finite RMS
value, so I take the RSS of the FWHM of the PSF and of the blur.  To obtain a Gaussian function
representing the blur, I use the RMS over astrometric CCD's mentioned above, with β=0.6.  The
RMS is 2.2 µm, and the FWHM of such a Gaussian is 5.2 µm.  The FWHM of the PSF for a
6000 K star is 15.9 µm.  Taking the RSS of these yields an estimate for the net FWHM of
16.7 µm.  This is an increase of only 5%.  The photon-limited mission precision may be expected
to worsen by a similar percentage.



CCD Ast u1 u2 v RMS blur, µm
β = 0.6 β = 1.0

1 1 -0.2056 0.2056 -0.8718 0.9227 1.0668 
2 1 -0.4503 -0.0390 -0.6539 0.4229 1.8664 
3 1 0.0377 0.4489 -0.6539 0.4174 1.8755 
4 1 -0.6936 -0.2823 -0.4360 1.8112 0.8489 
5 1 -0.2056 0.2056 -0.4360 1.9107 3.8967 
6 1 0.2823 0.6936 -0.4360 1.8112 0.8489 
7 0 -0.9382 -0.5270 -0.2179 5.5022 3.5849 
8 1 -0.4503 -0.0390 -0.2179 1.7698 3.7331 
9 1 0.0377 0.4489 -0.2179 1.7788 3.7425 

10 0 0.5256 0.9368 -0.2179 5.4717 3.5552 
11 1 -0.9382 -0.5270 0.0000 5.2718 3.3626 
12 1 -0.4503 -0.0390 0.0000 2.0005 3.9677 
13 1 0.0377 0.4489 0.0000 2.0097 3.9772 
14 1 0.5256 0.9368 0.0000 5.2414 3.3331 
15 0 -0.9382 -0.5270 0.2179 5.5022 3.5849 
16 1 -0.4503 -0.0390 0.2179 1.7698 3.7331 
17 1 0.0377 0.4489 0.2179 1.7788 3.7425 
18 0 0.5256 0.9368 0.2179 5.4717 3.5552 
19 1 -0.6936 -0.2823 0.4359 1.8109 0.8490 
20 1 -0.2056 0.2056 0.4359 1.9109 3.8970 
21 1 0.2823 0.6936 0.4359 1.8109 0.8490 
22 1 -0.4503 -0.0390 0.6539 0.4229 1.8664 
23 1 0.0377 0.4489 0.6539 0.4174 1.8755 
24 1 -0.2056 0.2056 0.8718 0.9227 1.0668 

RMS     2.2218     2.8231

Table 2. Blur for each CCD, for two choices of β.  u1, u2, and v are in units of the
FOV radius ρo. Photometric chips have a 0 in column "Ast," and their blur values
are written in strikeout text.  The rows for the two astrometric chips with greatest
blur (for β=0.6) are shaded gray.  The data for CCD positions in columns u1, u2, and
v are from [Horner, EM-0005].  The row marked "RMS" is the RMS of the blur for
the astrometric chips. 



Figure 2. CCD positions, plotted from the data given in Table 2, and used in calculating blur. 
Circle represents edge of FOV as defined in Table 1.
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Figure 3. Geometry of the mapping.

Appendix A.  Projection from the celestial sphere to the focal plane.

This appendix treats a small, irreducible distortion arising from the mapping of a sphere
onto a plane. 

Consider a star at point C (Fig. 3).  The center of one of the telescope fields of view is at
A.  Arcs AB and AC have length θu and θv, respectively.  (All arcs named in the text of this
Appendix are arcs of great circles unless otherwise specified.)  The star maps to a point C� in the

focal plane.  The spacecraft rotates about OP,
and from the spacecraft frame, point C moves
on a circle centered at Q.  Arc DF (not part of
a great circle) is part of this circle.  When the
spacecraft rotates uniformly, θu increases
linearly with time.

The optical system maps points along
arc AC, which makes an angle ψ with the
observing plane (OAE), onto points on a line
A�C� in the focal plane.  (A�C� makes an
angle ψ with the scan direction.)  A system
free of "f-θ" distortion has a linear
relationship between the angle θ and the
distance A�C�.  (The constant of
proportionality is called the focal length.)
Optical distortion � the cubic term considered
in this memo, for example -- introduces
nonlinearity into the mapping of angles θ into
distances .  A�C�

Even in a system free of f-θ distortion,
there is a small distortion due to the mapping
of the celestial sphere onto the focal plane. 
This distortion is small enough to ignore at
the present stage of FAME�s design, but is
calculated here for reference.  It shifts images
by a distance of the order of 1 µm, i.e., 14
milliarcsec. 

We need to calculate the length of arc AC, θ, and the angle ψ.  Consider the spherical
triangle ABC.  Angle ABC is 90�.  We need the analog of Pythagoras' Theorem for spherical
triangles, 

cosθ � cosθu cosθv . (9)

We need another relation for right spherical triangles, 



Figure 4. Image motion due to projection distortion, for several cross-scan angles θv.  Motion
with zero f-θ distortion, using the nominal focal length f, has been subtracted.  The individual
curves are straight lines, to within about 1 part in 105.  For each value of θv, the curve terminates
at the edge of a focal plane of 0.57� radius.  Slopes of the lines are given by -27

cosψ � tanθu cotθ. (10)

This allows us to compute θ and ψ.  For an axisymmetric optical system, ψ is the same in FOV
and focal plane.  In the focal plane, (ρ,ψ) form the (2-D) polar coordinates of the image point,
with ψ measured from the u-axis.  The distortion is characterized by ρ(θ).  For this memo, I take
the optical system to be axisymmetric, neglecting FAME's off-center aperture.  For this appendix,
I assume zero f-θ distortion.  (In the body of the memo, I calculated the blurring that would result
from the distortion of FAME's actual optical system prior to the addition of the aspheric
corrector.)  The coordinates of the image point are 

u � ρcosψ
v � ρsinψ . (11)

We may take the u motion thus calculated, and subtract fθu, which is the value that would result
from image motion at a constant velocity that is independent of θv.  

While it is easy to substitute (9) into (10) to obtain expressions for θ and ψ in terms of  θu
and θv, it would involve some effort to expand the resulting expression to find the terms of
leading order in θu and θv.  Therefore, I have simply evaluated (9) through (11) numerically.  The
results are shown in Fig. 4.  While the curves for each value of θv are very nearly straight lines,
the different slopes imply that the images will traverse the focal plane at different speeds.  The
FAME CCD�s will all be clocked at the same rate, so the different speeds give rise to blur, but
not much of it: the peak to peak displacement in Fig. 4 is 2 µm, and the rms is even smaller.



An alternate approach to the spherical triangles used above, perhaps more familiar to the
modern reader, uses vectors.  Let the x-axis be along OA, y be along OE, and z be along OP. 
Then taking the sphere, of which a piece is shown, to have unit radius, point A is at (1,0,0), and
C is at .  We then have that (cosθu cosθv, sinθu cosθv, sinθv )

θ � acos( �A � �C) � acos(cosθu cosθv ) (12)

as before.  To calculate ψ, note that it is the dihedral angle between planes OAC and OAE.  Its
cosine, then, is just the dot product of normals to OAC and OAE.  The normal to plane OAC is 

�n1�
�A× �C

|�A× �C|
(13)

The normal to plane OAE is .  The dot product is the z component of .  Doing the symbolic�z �n1
manipulations by machine,

cosψ �

sinθu cosθv

1� cos2θu cos2θv
1/2 (14)

which is equivalent to (10).  
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